skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zeller, Will"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Workflow reconstruction through logs is crucial for troubleshooting targeted distributed systems. It is also challenging to extract enough information from logs and keep a concise view, which makes manual log analysis hard to practice. However, currently popular tools rely on identifier-based log parsing, leaving a large amount of workflow information unexploited. In this paper, we propose a log extraction approach NLog, which utilizes a natural language processing based approach to obtain the key information from log messages and identify the same object in logs generated by different statements without any domain knowledge. We propose to use keyed message, a new log storage structure to store the parsed logs. We implement NLog and apply it to distributed data analytics frameworks Spark and MapReduce. Evaluation results show that NLog can accurately identify the objects in log messages even without explicit identifiers. By using keyed messages, users can have a concise as well as flexible view of the workflows. 
    more » « less